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Abstract—The computation of probabilistic safe regions remains an evergreen problem in
stochastic settings. Although the exact computation of safe regions may be possible for some
specific problems, the results are generally overly complex (e.g., nonconvex, nonconnected)
making them impractical for real-time applications. In this work, we present a sample-based
procedure to obtain tight inner approximations of the safe region. The proposed approach does
not require any assumption on the underlying probability distribution and the computation
of the inner approximation set can be done offline. Unlike similar approaches, the proposed
pack-based probabilistic scaling includes a tightening constraint, which tunes the level of con-
servativeness of the resulting approximation.

Keywords: randomized algorithms, probabilistic robustness, uncertain systems, statistical learn-
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1. INTRODUCTION

Real-world systems are often not deterministic and subject to uncertainty, necessitating the de-
velopment of robust and stochastic control strategies. In robust control [1-3], the uncertainty
is assumed to be unknown, but confined in a compact region, and the controller is designed
to guarantee constraint satisfaction for all admissible values of the uncertainty. In contrast,
stochastic control [4-6], incorporates probabilistic considerations introducing the concept of chance
constraints [7]. Unlike hard constraints, chance constraints can be occasionally violated, provided
that the probability of satisfaction remains above a specified threshold.

Relaxing the constraints and taking probabilities into account make stochastic schemes less
conservative than their robust counterpart. Moreover, they make it possible to deal with infinite
support uncertainties. In return, the resulting design process is much more intricate for two main
reasons: First, it is highly difficult to check whether solutions of chance-constrained problems are
feasible, and second, chance constraints usually involve nonconvexity (see, e.g., [8, Fig. 1; 9, Fig.1].

In the last decade, sampling-based schemes have emerged as a valid tool to deal with stochastic
problems. Notably, Prof. Boris Polyak played a pivotal role in this field, being among the first
scholars to recognize the potential of randomized methods in tackling optimization problems under
stochastic uncertainty; for instance, see the works [10-12]. These works paved the way for subse-
quent results combining sampling and optimization, as the scenario approach proposed in [13]. For
an overview of these techniques, the reader is referred to [14, 15].
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TIGHT APPROXIMATIONS OF CHANCE CONSTRAINED SETS 741

The probabilistic safe region or chance-constrained set (CCS) is defined as the region that
contains all the points satisfying the chance constraints. In a general setting, the exact computation
of the CCS is cumbersome and requires the uncertainty to follow a certain distribution [16, 17].
Besides, the complexity of its geometry can make it ill-suited for real-time applications [18]. Because
of these limitations, it is pertinent to address the problem of approximating the safe regions using
sets of manageable complexity.

For the stochastic control problem, several relaxations have been proposed, which rely on com-
putationally efficient approximations of the chance-constrained set. These relaxations can be either
based on some concentration inequalities, e.g. exploiting previous knowledge about the structure
of the uncertainty [19], or they can be constructed using random sampling methods [20, 21].

The present work stems from the results in [9, 22], where a sample-based methodology to inner
approximate the CCS named probabilistic scaling is presented. This approach computes first a
simple approximating set, which is then scaled to meet the required probabilistic guarantees. These
operations are all performed offline and the trade-off between the number of samples required and
the tightening of the approximation can be adjusted by the user.

In this paper, we discuss and extend the pack-based probabilistic scaling approach presented
in the preliminary conference publication [22], by defining a novel measure of the tightening of
the approximating set. Then, we show how to design the approximating set to meet the required
probabilistic guarantees while incorporating the specified tightening constraint. In this way, the
user is given the capability to control at the same time the complexity and the fitting of the
resulting approximating set, balancing the trade-off between the required number of samples and
the computational complexity of the approximation problem (which is computed offline).

The paper is structured as follows. In Section 2 we introduce the problem of approximating

the chance constrained set and the numerical example used to compare the different approaches.
In Section 3 we go through statistical learning theory solutions to the problem, first introducing
the classical probabilistic scaling approach (Section 3.1) and later describing the extension to the
pack-based framework (Section 3.2). Then, Section 4 is dedicated to the tight immersed pack-
based probabilistic scaling, which is the main contribution of this work. Last, Section 5 includes
the comparative analysis of the different approaches in terms of conservativeness.
Notation: Nxg is the set of natural numbers including 0. The notation & refers to the Minkowski
sum of sets. Given a set of N scalars {z1,z2,...,2n}, we denote z1.y the smallest one, xo.n the
second smallest one, and so on and so forth until xy.n, which is the largest. By the definition
of z14,.n, for a given r > 0, no more than r elements of {x1,...,zx} are strictly smaller than
Z14r:N- We refer to the binomial distribution as

B(s;N,¢e) = 25: <N>£’(1 — )Nt

i—o \ ¢

2. APPROXIMATING CHANCE-CONSTRAINED SETS

Let us consider a robustness problem, where the controller parameters and the auxiliary variables
are parameterized by means of a decision variable vector 8 € © C R™?, which is denoted as design
parameter. The uncertainty vector w represents one of the admissible uncertainty realizations of
a random vector with given probability distribution Pryy with (possibly unbounded) support W.
Then, the generic uncertain constraint can be defined as

g9(0,w) <0, (1)

where the function g : R®*" — R captures the requirement for 6 given w. In particular, in a robust
setting, one requires that the constraint (1) holds for all possible values of w. Clearly, there might
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742 MIRASIERRA et al.

be situations where dealing with this kind of constraint in a fully robust manner is senseless, e.g.,
when the support of w is unbounded [23]. In that case, one may accept that the constraint (1) is
violated by a fraction of the elements of W. This concept is rigorously formalized in the definition
of chance constraints.

Definition 1 [set of probability e-CCS [9]]. Consider a probability measure Pryy over W. Given
the violation level € € (0,1), we define the chance-constrained set of probability € (e-CCS) as follows

Q) ={0 € 0| Priy{g(0,w) >0} < e}.

Recently, several approaches have been proposed to construct a probabilistically guaranteed
approximation of the chance-constrained set. These approaches are based on sample-based results
(see e.g., [21, 24, 25]). Given W, consider a collection of N independent identically distributed
(ii.d.) samples z = {wi,...,wy} drawn from W. In this case, we say that z belongs to the
Cartesian product WY = W x --- x W (N times) and, correspondingly, we say that z is drawn
according to the product probability measure Pryy~. Let us introduce the concept of an indicator
function, later used to redefine the chance-constrained set.

Definition 2 [indicator function of g]. Given § € © and w € W, then the indicator function
I9:© x W — {0,1} of constraint (1) is defined as

)0 ifg(f,w) <0
g - )
(0, w) = { 1  otherwise.

In the context of statistical learning theory, we can compute approximations of the e-CCS by
means of a constraint on the empirical mean defined as

1 N
- ZIQ(O,’LUZ').
Ni:l

That is, given z = {wy,...,wN} € WH and a discarding parameter 7 > 0, then the parameter
p = 7 bounds the empirical mean so that the set

1 N
D)y (2) = {9 €O: Y (0w < p} @)
=1

constitutes an approximation of Q(¢). Note that the expression + SN T9(0,w;) < « means that
the constraint g(6,w;) < 0 is violated by no more than r elements of z.

Remark 1. We note that, given ¢, Q(e) is a fixed set. On the other hand, when the e-CCS is
approximated by means of sampling techniques (see e.g., [9, 26]), then the corresponding approxi-
mated set has a random nature, being generated from the random samples z € WN.

Assuming that the indicator function I9 has finite Vapnik—Chervonenkis (VC) dimension [27]
and that p < ¢, then the probability of ®,, (z) being an inner approximation of Q(e), i.e.,

Pryyv {@yy (2) € Q(e)}

converges to 1 as the number of samples N converges to infinity. In [28], the sample complexity
bounds for N are explicitly computed, which guarantee that ®,, (z) is included in Q(e) with a
given confidence 0 € (0,1), i.e., Pryyn{®,,(z) C Q(e)} > 1 —0.

The resulting sample complexity grows linearly with the VC dimension of I9 multiplied by a
factor larger than % However, as shown in [9], this approximation may be very conservative. Also,
when the function g is not convex, the resulting approximation is generally non-convex and is often
non-connected. This may hinder its practical application and makes it generally unsuitable for
real-time problems.
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TIGHT APPROXIMATIONS OF CHANCE CONSTRAINED SETS 743

Fig. 1. Scheme of the probabilistic scaling approach.

Building on these notions, [9, 22] introduced the probabilistic scaling idea. At the basis of
this approach is the introduction of an initial simple approrimating set (SAS) 6. ® Qq, which
has to possess two main characteristics: i) be able to capture sufficiently well the “shape” of the
probabilistic set (), while at the same time being ii) sufficiently simple. This initial SAS does
not need to offer any guarantee of probabilistic nature, but it should be able to capture the shape
of the e-CCS.

In [9] it was shown how to scale this set around its center . to obtain a scalable SAS
Q(’Y) = 06 @ IYQOa

and a sample-based procedure was introduced to construct a probabilistically meaningful approxi-
mation of the e-CCS. Specifically, given a shape 2y and a scaling center 6., the goal of probabilistic
scaling is to find the largest scaling factor 4 such that

Pry{0. ® 700 C Qe)} =1 -9, (3)
and therefore, also the chance constraint
Pryw{g(6,w) <0} > 1< (4)

is satisfied with a probability not lower than 1 — 4.

The procedure for constructing such an approximation is discussed in detail in [9], and recalled
formally in Section 3.1.

In Fig. 1, we give a simple illustration of the approach, where we assume that the red area
represents the e-CCS, which as observed can be in general nonconvex. Then:

(1) Select “candidate” approximating set 6. + g (black polygon);

(2) To design the optimal scaling 7, extract N samples z = {wy,...,wx} € AR

(3) For each random sample w;, compute the maximum scaling 7; so that the scaled set (dashed
polygon) does not violate the constraint corresponding to wy;

(4) Select the optimal scaling as ¥ = 414N, i.e., as the r smallest value of ~;.

Then, (3) holds for B(r; N,e) < 6.

Despite the undeniable benefits of exploiting probabilistic scaling, especially in the extended
version where the computational complexity is further reduced by employing the so-called simple-
approximating sets (SAS) [9], the scaling solution may result to be conservative. This issue is
illustrated by means of the following example from [22].

Ezample 1. We consider a problem involving individual chance constraints, where every con-
straint is tangent to the unit circle of a given dimension at a random point, drawn from a uniform
distribution. In this case, clearly, the unit ball is the safe region with probability 1, whereas the
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Fig. 2. The red circle represents 2(0.2), the dashed black circle is the SAS (unit circle), and the cyan
lines are the sampled constraints.

41 —ng =2 i
—ng=3
—ny = 10

3+ —ny =20 N

0 | |

0 0.05 c 0.1 0.15

Fig. 3. Radius r of () as a function of € for different problem dimensions ng.

e-CCS is always a slightly larger scaled version of the unit ball as € increases. In particular, it
can be easily shown that the exact radius corresponding to the chance constrained region Q(¢) can
be computed using some transcendental functions. Figure 2 illustrates this example in R?: where
the dashed line is the unit circle in R? and the outer red circle represents the chance constrained
set 2(e) for the specific value € = 0.20.

Assume that we want to approximate the e-CCS using the empirical mean approximation @, (z)
introduced in (2). To this end, we generate N random linear constraints tangent to points drawn
from a uniform probability distribution on the surface of the unit hypersphere and construct the
approximation as the intersection of them (possibly discarding the “worst” ones). It is clear that
such an approximation will fail to capture the red circle.

Additionally, assume we want to use a probabilistic scaling approach, and we choose the unit
ball as the initial approximation 6. @ €y of the chance-constrained set Q(¢). Then, applying the
previously described procedure, it would be possible to scale this initial geometry around its center
(the origin) to obtain an inner approximation of (¢) with a given confidence level § € (0,1).
However, it is evident that the scaling scheme will always yield the unit hypersphere as a final
result, as each sampled constraint is tangent to it, implying that all computed scaling factors will
be equal to one. Hence, simple sampling-based procedures will fail to capture the radius of the
true set Q(e). Note that this radius may be significantly larger than one, especially when the ngy
increases, as shown in Fig. 3.
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TIGHT APPROXIMATIONS OF CHANCE CONSTRAINED SETS 745

On the other hand, for the given example, one may notice that larger scale factors can be
obtained if one scales the unit-circle taking into consideration only the regions in which more than
a given number of constraints are violated. In this paper, we resort to the pack-based strategy,
successfully employed in the context of statistical learning theory [28] and convex scenario [29],
to obtain less conservative sample complexities and to guarantee that the obtained scaled set is
included into the chance constrained set with a given confidence level. Specifically, the goal is
to extend the pack-based strategy first proposed in [22] to obtain sample-based approximations
of Q(e) with tunable complexity, which do not require any previous knowledge of the problem,
e.g., symmetry. The ability to reduce the conservativeness of the proposed approach will be later
demonstrated against the illustrative Example 1.

3. PRELIMINARY NOTIONS

In this section, we first recall some notions from the pack-based strategy, which are propaedeu-
tical to the main results of this paper. Then, in the next section we present the pack-based
probabilistic scaling (PBPS) approach discussed in [22], which will be later extended to further
reduce the conservativeness of the approximating set. First, we introduce the definition of pack of
samples.

Definition 3 [pack of L samples|. Given an integer L, a collection of L samples z = {w1, ... ,wr} €
WY is said to be a pack of dimension L.

Then, we extend the definition of indicator function in Definition 2 to the pack-based framework.

Definition 4 [pack indicator function]. Given integers s and L such that 0 < s < L and a pack
z € W of dimension L, the pack indicator function I : © x W¥ — {0,1} is defined as

L
0 if Y I9(0,we) < s
/=1

19(0,2) = (5)

1 otherwise,

where 19(60,z) indicates whether the point € violates more than s of the constraints associated with
the uncertainty realizations of the pack z.

Definition 5 [pack safe region]. The pack safe region ®,(z) is defined as the set of points which
violate no more than s of the constraints associated with the uncertainty realizations of z, and can
be expressed as

O (z) ={0€0O|I0,2) =0}.

In the next section, we present a generalization of the results on probabilistic scaling applied in
the framework of pack-based strategy. In detail, we show how to scale the set 0. @ Qg around its
center 6. to guarantee with confidence level § € (0,1), the inclusion of the scaled, pack-based set
into Q(e).

3.1. Generalized Probabilistic Scaling
First, we introduce the definition of scaling factor in the pack-based framework.

Definition 6 [pack scaling factor]. Given a scalable SAS () defined by a scaling center 6, € ©
and a shape g, and a pack z € W', we define the pack scaling factor of Q(v) relative to the
random constraints ¢(0,w;) < 0,Vw; € z as

) ' 0 if 0. ¢ ®y(z)
70, Q0,2) = max ~ otherwise. (6)
HC@VQOQCDS(Z)
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746 MIRASIERRA et al.

Now, we formalize the generalized probabilistic scaling problem, considering M i.i.d. packs z;,
each one of dimension L. Note that the problem generalizes the probabilistic scaling introduced
in [9], which can be obtained by letting M = N and L = 1 (i.e., considering N packs of dimension 1).

Property 1 [generalized probabilistic scaling]. Given the accuracy parameter ¢ € (0,1) and the
confidence level § € (0, 1), consider the discarding integer parameter r > 0 and suppose that M is
chosen such that

B(r;M,e) < 0. (7)
Draw M ii.d. L-dimensional packs, z; € WL, i =1,... M. For each pack z, compute the corre-
sponding pack scaling factor ~; as
Vi = 78(067 Qo, Z)
according to (6) and define ¥ = 714,.as > 0. Then, with probability no smaller than 1 — ¢,

Pryyc{0. ® Q0 € ®s(z)} <e.

Proof. This property can be demonstrated by particularizing the results of convex scenario
[21, 26] to the case of a scalar decision variable. Another possibility is to derive the results using
the properties of the generalized max function [30, Property 3]. Consider the following optimization
problem:

max 7y (8)
st. 0.DYQ C Dy(z), 1=1,..., M.
If this problem has a feasible solution, then we can rewrite it using the definition of v*(-) as
9
max 7y (9)
st. v <y (0:Q0,2), i=1,...,M.

It has been proved in [21, 26] that if one discards no more than r constraints on a convex problem
with M random constraints, then the probability of violating the constraints with the solution
obtained from the random convex problem is no larger than ¢, with probability no smaller than
1 -0, where

5= (d;i11>B(d+r—1;M,5),

and d is the number of decision variables. We first notice that (9) is convex and has a unique scalar
decision variable v, i.e., d = 1. Also, the assumptions required in the application of the results
of [21, 26] can be easily checked. In particular, non-degeneracy is implied by the fact that the
problem is scalar, while uniqueness can be enforced by introducing a tie-break rule. Hence, if we
allow 7 violations in the above minimization problem, then with probability no smaller than 1 — ¢,
with 6 = B(r; M, ¢), the optimal solution 7 of problem (9) with no more than r constraint removed
satisfies
Prype {7 > (0., Q0,2)} < e.

Hence, we can conclude that with probability no smaller than 1 — ¢
Pryyr{0. ®7Q € ®5(z)} <e.

Note that problem (9) with constraint removal can be solved directly by ordering the values
vi = v*(0c, Q0,2;). 1t is clear that if » > 0 violations are allowed, then the optimal value for v is
¥ = Y14r:N. Smaller values of v would meet the inclusion of constraint but will not be optimal,
while larger values of v would no longer meet the inclusion constraint a.

As discussed before, the result in [22, Property 1] can be particularized from Property 2 by
setting M = N and L = 1. This is summarized in the next corollary.
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Corollary 1 [classic probabilistic scaling]. Suppose that N is chosen such that
B(r;N,e) <.

Let z ¢ WN.  For each constraint i =1,...,N, define v; =" (0, Q0,2;). Suppose that 5 =
Yi+r:N > 0. Then, with probability no smaller than 1 — 4,

Pry{6. ® Q0 € Q(e)} < e.

The proof is straightforward and follows directly from Definition 1. The above corollary shows
that the probabilistic scaling approach in [9] can be viewed as a special case of a more general
pack-based scheme.

Calculating approximations of the e-CCS using classical probabilistic scaling is generally easy
to compute, does not require any assumption on the underlying probabilities (such as finite VC
dimension), provides probabilistic guarantees to the scaled region, and its effectiveness has been
proven [9]. Despite all its advantages, classical probabilistic scaling may still lead to very conser-
vative solutions, as shown in Example 1. In that case, having that v, =1, forall ¢ =1,..., N and
all the constraints are taken into account independently, the act of discarding some of them has no
effect on the resulting scaled approximating set.

In the next section, we outline the so-called pack-based probabilistic scaling, first proposed
in [22]. For the same initial SAS, this variant of the classical probabilistic scaling applied in the
framework of pack-based strategy may lead to less conservative results at the expense of (possibly)
more demanding computational cost.

It is important to highlight that the discarding parameter r is set by the user and it should be
selected taking into account that large values of » make the resulting set less sensitive to extreme
values, at the expense of a larger sample complexity N. On the other hand, the convexity of the
approximating scaled set is independent of the discarding parameter r and only depends on the
choice of the SAS geometry.

Remark 2. Property 1 can also be particularized for the case r = 0. Suppose that M is such that
(1 —e)M < 6. Draw M ii.d. L-dimensional packs z; € W¥ and define v; = v*(f., Qo,z;). Suppose
that 4 = v1.a7 > 0. Then, with probability no smaller than 1 — §, Pryyc{6. ® Q0 € ®4(2z)} < e.

3.2. Pack-Based Probabilistic Scaling

The main underlying idea of pack-based probabilistic scaling is to divide the uncertainty sam-
ples into packs and to allow some constraint violations inside each pack. As opposed to regular
probabilistic scaling, where the scaling factor associated with each constraint is computed indepen-
dently, in the pack-based approach the constraints inside each pack are taken into account together.
Ultimately, this can lead to tighter approximations of the e-CCS and reduced sample complexity.

Let the N sampled constraints be divided into M packs of L constraints each, i.e., z =
{z1, ...23s} = {wy,..., wy}, with z€ WV and z; € WX for i =1,...,M. The following theo-
rem shows how to determine the scaling factor using a pack-based approach so that the scaled SAS
is fully contained in the e-CCS with given confidence 4.

Theorem 1 [pack-based probabilistic scaling]. Consider a shape Q, a scaling center 0., accuracy
parameter € € (0,1), confidence level 6 € (0,1), and nonnegative integers M, L, s with L > s so that

B(s;L,e)™ < 4. (10)

For each pack of constraints i = 1,..., M, let z; € WY and define v; = v*(6.,Q0,2%) as in (6).
Suppose that ¥ = v1.pr > 0. Then, with probability no smaller than 1 — 6,
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Proof. Let p=1— B(s;L,e). From Remark 2, we know that if M is chosen such that
B(s;L,e)™ < § and 5 = 1.7 > 0, then with probability no smaller than 1 — & we have

PrWL{ec S '790 g (I)s(z)} <p-

Equivalently, Pryy,c{I9(0,2z) =1, V0 € 6. ® 3Qy} < p. Moreover, from Property 3 in Appendix A
we have that
Pryyr {I2(0,2z) =1} <p <= Priy{IY(A,w) =1} <e. (11)
Thus, we conclude that Pr{jv {19(0,w) =1} < g, VO € 0. ® 78, equivalent to 0. & 32y C Q(e). O
Unlike regular probabilistic scaling, the sample complexity in PBPS is given by two parameters,
namely the number of packs M and the size of each pack L. The sample complexity is calculated
as N = ML. Consequently, condition (10) is defined by three tunable parameters: M, L and s.
Similar to the discarding parameter r of regular probabilistic scaling, large values of the discarding
parameter of each pack s make the approximating set more insensitive to extreme values. As for M

and L, one could choose them according to any criterion, e.g., minimize the sample complexity N.
Further details can be found in [22].

In the next section, we extend the PBPS approach introducing a constraint tightening scheme,
namely the tight immersion, to obtain a tighter approximation of the e-CCS. Moreover, this ex-
tension will provide a clear way to select the tuning parameters, as discussed in Section 4.1.

4. TIGHT IMMERSION

First, we introduce the notion of tight immersion.
Definition 7. 7-tight immersed. The set S is 7-tight immersed in the e-CCS Q(e) if

S C ), (12a)
S € Q(re), (12b)

where 7 € [0, 1) is a measure of tightening,.

Remark 3. If the e-CCS Q(e) is strictly increasing with respect to ¢, i.e., V71,72 € [0,1) with
71 < To, it follows that Q(me) C Q(7m2e). Hence, the larger 7 is, the larger Q(7¢) will be.

Tight immersion guarantees not only that the approximation set is inside the e-CCS (12a), but
also that it will be not inside a conservative set characterized by 7 (12b). Therefore, it imposes a
more restrictive condition than the regular inner approximation. However, tight immersion should
never be used to compare the goodness of two different geometries. Indeed, as illustrated in Fig. 4,

7 s}
(&4

Fig. 4. Tllustration of the concept of tight immersion.
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we note that for the same geometry, the set with the largest value of 7 fits the e-CCS better
(Fig. 4a). Instead, from Fig. 4b we note that for different geometries tight immersion by itself does
not imply good approximation.

The following property is complementary to the Definition 7 of tight immersion.

Property 2. If the approximating set {(e) is 7-tight immersed in the set €(¢), then it is also
7-tight immersed in it, with 7 € [0, 7).

Proof. From Definition 7, we know that being Q(e) 7-tight immersed in the set () implies
) Z Q(7e). Then, for any 7 € [0,7), we have Q(7¢) C Q(7e). Consequently, the condition
) Z (7e) (12b) holds for any 7 € [0,7) and this concludes the proof. O

Next, we finally demonstrate how to determine the pack parameters (M, L,s) so that, upon
pack-based probabilistic scaling, the condition (12b) is met with confidence 1 — §, with § € (0,1).
Hence, given a SAS )y centered in 6., we aim to determine the optimal scaling factor 74 so that the
scaled set S = 0. ® 78 is tight-immersed in Q(¢).

Theorem 2 [tight-immersed pack-based probabilistic scaling]. Consider the SAS with shape Qg
and scaling center 0., accuracy parameter € € (0,1), confidence level 6 € (0,1), tightening parameter
7 € [0,1), and non negative integers M, L, s, with L > s and such that the following condition holds

(

Qe
Qe

B(s; L,me)™ > 1—4. (13)

Draw M i.i.d. multisamples z; € WY, withi =1,..., M, and define the pack scaling factor related
to each i pack of random constraints as in (6), i.e., v; = v*(0., Qo,2;). Suppose that ¥ = 1. > 0.

Then, with probability no smaller than 1 — 4§,
0. Y C Qe), 0D L Q(7e).

Proof. Let p = B(s; L, 7e). According to Property 5 in Appendix C, if we select the parameters
(M, L, s) such that (13) holds, then we have that the optimal scaling factor is 4 = v1.pr > 0 satisfies,
with probability no smaller than 1 — §, Pryyr{6. ® Q2 C ®4(2z)} < p, equivalently rewritten as

Pryyc{19(6,2z) =0, V8 €b.dvQ} < p.
Then, from Property 4 in Appendix B, we know that
Pryy. {19(0,2) =0} <p <= Pry {I(0,w) =0} < 1 — e, (14)
Therefore, we can conclude that

Priy {I(0,w) =0} < 1—7e, VO € 0.dQ,

ie., 0. ® 50y £ Q(re) with probability no smaller than 1 — . O

Remark 4. We note that in Theorem 2 we use the tightening confidence 1 — ¢ instead of the
original confidence 1 — . This tightening confidence is user-defined and can be set lower than the
original confidence to limit the sample complexity.

4.1. Design of the Pack Parameters

In this section, we show how to design the parameters (M, L, s) of the pack-based approach to
meet tight immersion with confidences d and J, respectively. From Property 1 and Theorem 2, we
know that conditions (12a) and (12b) hold if the pack parameters (M, L, s) are selected such that

M1InB(s;L,e) < Ind, (15a)

M1nB(s; L,te) > In(1 —9). (15b)
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We note that (15a) embeds the probabilistic guarantees whereas (15b) is only used to tighten the
solution. Since B(s; L,¢) is a negative quantity, we can divide (15a) by In B(s; L, €) to obtain

M Iné .
In B(s; L, ¢)

Hence, to satisfy (15a), it suffices to select M such that

Analogously, for (15b) we have that M shall be selected so that the following condition holds

In(1 —9)
S B(s;L,Te) (17)
For a given set of probabilistic and tightening parameters (e, d,7,d), there exist multiple com-
binations of (M, L, s) that meet (16) and (17). In this paper, we propose two different criteria (:
(i) minimize the number of possible combinations of s + 1 constraints, i.e., ( = M(sil), or (ii) min-
imize the total sample complexity, i.e., ( = M L. Then, the pack parameters (M, L,s) are the
solution of the following optimization problem

(M°,L°,s°) = argmin

M,L,s€N5g
ot In(1 — 6)
o S InB(s; L, Te) (18)
Ind
B {ml ’
L>s+1.

To solve Problem (18), we exploit the ezhaustive search approach [31] to find a proper combi-
nation of the pack parameters (M, L, s), as shown in the following example.

Ezample 2. Given € = 0.05, § = 0.001, § = 0.1, for each s = [1,30], we set M according to (16).
Then, we test the values L = [s + 1,--- ,s 4 300] and check if the pairs (L, s) satisfy (17). Last,
among all the pairs that satisfy (17), we select the one that minimizes the ( criterion (either
¢ = M(sil) or ( = ML). In Table 1, we report the pack parameters (M, L, s) obtained by solving
Problem (18) with the proposed approach using both criteria (. Table 1 shows that, for either
criterion, increasing the tightening parameter 7 results in an increase in both the number of samples

required (V) and the combinatorial complexity (M (Sil)) When the number of available samples

Table 1. Pack parameters, sample complexity and number of possible combinations of TI-PBPS
for different values of 7 = [0.2,0.3,0.4, 0.5] minimizing the two different criteria ¢

Criterion: minimize M(&LH) H Criterion: Minimize N
T M L |s|N M(") M | L s | N M)
0.2 43 27 | 2 | 1.16e4+03 | 1.25e+05 2 195 | 4 3.90e+02 | 4.46e+09
0.3 155 27 | 3 | 4.19e+03 | 2.72e+06 2 303 | 8 6.06e+02 | 1.05e+17
04 2681 20 | 4 | 5.36e+04 | 4.16e+07 | 4 278 | 10 | 1.11e+03 | 6.28e+19
0.5 15033 | 29 | 6 | 4.36e+05 | 2.35e+10 8 309 | 14 | 2.47e+03 | 9.68e+25
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is limited, it is possible to achieve tight immersion with as little as 390 samples at the cost of a
high combinatorial complexity. Moreover, it is possible to add any limitation on the number of
samples N = M L as a constraint in the optimization problem (18) and obtain the pack parameters
that minimize the combinatorial complexity while satisfying the constraint on sample complexity.
Notice that tight immersion is usually computed offline; therefore, the complexity of calculating
the approximation of the CCS does not interfere with online control loops.

5. RESULTS

In this section, we use Example 1 to evaluate the approximations of the 0.05-CCS set by em-
ploying both regular PS and TI-PBPS for various problem dimensions ng. Hence, we choose the
unit ball centered in the origin as the initial SAS approximation 6. & y. Therefore, the resulting
approximating sets are balls centered in the origin and with radius «. Moreover, by means of a
Monte Carlo simulation, we draw 107 random constraints from a uniform distribution of the con-
straints tangent to the unit circle of each studied dimension. Taking advantage of the symmetry of
the problem, we calculate the points where the random constraints intersect a fixed axis and use
them to compute the exact value of the radius for 0.05-CCS. Then, we compute the radii of the
approximating sets obtained by employing regular probabilistic scaling and the novel TI-PBPS for
different levels of tightening 7. To reduce variability, the TI-PBPS radii correspond to the median
radius of three separated experiments, each containing different realizations of the constraints.

In Fig. 5 we can observe how, for this particular problem, the TI-PBPS is able to substantially
improve the result from regular PS (dashed black line), providing approximating radii more similar
to the real one (dashed red line). Moreover, as expected, the tightening of TI-PBPS improves as 7
increases.

3.5
"l __L 1-
) =l ---regular PS
25F e =02
. —7=03
2L . 1 S s | 7=04
I . —7=0.5
_—T " |---0.05-CSS

Fig. 5. Comparison of the radius () of the approximation set for different problem dimensions nyg
obtained by applying regular PS and TI-PBPS for € = 0.05, § = 0.001, and § = 0.1.

6. CONCLUSIONS

In this paper we have presented the probabilistic scaling approach to compute sample-based ap-
proximations of a chance constrained set. The proposed approach allows the user to first choose any
set and then apply a linear transformation to approximate the safe region with the desired proba-
bilistic guarantees. As a result, the complexity of the approximation is tuned a priori. A pack-based
variant of probabilistic scaling with a tight-immersed approach is proposed, which prevents the so-
lution from being conservative. The trade-off between the number of samples, problem complexity,
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and the level of conservativeness of this approach can be tuned by the user. Future research direc-
tions point towards improving the proposed solution, e.g. applying importance sampling schemes,
inspired by [32].

APPENDIX A

Property 3. Consider the integer parameters L > s > 0, the pack z € WL, and the probability
parameter € € (0,1). Then, for w € W, it holds

Pryyr {I9(0,2) =1} <1— B(s;L,e) <= Priy {I(f,w) =1} < e. (A.1)
Proof. Define E(6) = Pryy {I9(0,w) = 1}. Then, we have
Pryyc{I9(0,2) =0} = _ (?)E(G)i(l — E0)" = B(s; L, E(9)). (A.2)
=0

Denote p = 1—B(s; L, ). Since B(s; L, ¢) is a strictly decreasing function of € (see [23, Property 4]),
we have

B(s;L,E(0)) > B(s;L,e) =1—p < E(0) <e. (A.3)
Therefore, we have
Pryyr {I(0,2) =1} <p <= Pry {I9(0,w) =1} < ¢, (A.4)

which concludes the proof. O

APPENDIX B

Property 4. Consider the integer parameters L > s > 0, the pack z € W!, the sample w € W,
and probability parameter ¢ € (0,1). Then, we have

Pryyr{I?(0,2) =0} < B(s;L,7e) <= Prp{l(f,w) =0} <1—7e.
Proof. Recalling the definition of E(0) = Pryy {I9(0,w) = 1}, we have
s (L . .
Pryy {I9(0,2) = 0} = <i>E(9)’(1 — E(6))"" = B(s; L, B(6)).
=0
Since B(s; L, T¢) is strictly decreasing with respect of ¢ (Property 4 of [23]), we obtain
Pryyr {I(0,z) =0} = B(s; L, E(0)) < B(s; L,7e) <= Pryy {I9(0,w) =1} = E(0) > 7e.

Therefore,

Pryyc {I2(0,2z) = 0} < B(s; L,7¢) <= Pry {IY(0,w) =0} <1—7e. ]

APPENDIX C

Property 5. Given the accuracy parameter p € (0,1) and the confidence level § € (0, 1), suppose
that the number of packs M is chosen such that the following condition holds

1_pM<ga
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Then, for each pack of constraints ¢ = 1,..., M, draw the M ii.d. multisamples z ~ Pry,r and

define v; = v*(¢, 0, z;). Suppose that 4 = v1.37 > 0. Then, with probability no smaller than 1 —§,
Pyl {c ® 7 C ®Y(z)} < p.
Proof. The proof follows the one of Property 1. Consider the following optimization problem

myin 0 (C.1)
s.t. C@’YQQZ‘I}(S](Z), iZl,...,M.

If problem (C.1) has a feasible solution, according to (6) we can rewrite (C.1) as

i 2
min 7y (C.2)

st. > (c,Q,2y, i=1,..., M.

According to the sampling-and-discard approach [21, 26], if one discards no more than M — 1
constraints and the number of decision variables d is d = 1, then the probability of violating the
scaled approximating constraint set is no larger than p € (0,1), with probability no smaller than
1 — 8, where the confidence level 6 is defined as follows:

M-—1
5 = (%:1)3(1\/-’—1;%1)): > (?)pi(l—p)Mﬂ'

=0
M
M\ . i
= 1‘2( ; )pz(l—p)M =1-p¥
=M

If we remove no more than M — 1 constraints, the optimal solution to Problem (C.2) is given by
¥ = y1.:m, With 7; = v%(¢, Qp, z). Correspondingly, we have P_r%L {7 < (¢, Q0,2)} < p, from which
we can conclude that, with probability no smaller than 1 — ¢,

Prif {0 ® 700 C ®4(2)} < p. O
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